Problem 24.44

Again, what's tricky about this is the fact that the charge on the conductor will be distributed over both sides of the sheet. Playing this out, we get:

a.) charge density?

$$\sigma = \frac{\text{charge}}{\text{area}}$$
$$= \frac{2x10^{-8} \text{ C}}{(.5\text{ m})(.5\text{ m})}$$
$$= 8x10^{-8} \text{ C/m}$$

b.) What is E above the plate:

$$E = \frac{\sigma}{\varepsilon_{o}}$$

$$= \frac{8x10^{-8} \text{C/m}^{2}}{\left(8.85x10^{-12} \text{ C}^{2} \cdot \text{m}^{2}/\text{N}\right)}$$

$$= 9x10^{3} \text{ N/C}$$

$$\Rightarrow \vec{E} = \left(9x10^{3} \text{ N/C}\right)\left(+\hat{j}\right)$$

$$\Rightarrow \vec{E} = (9x10^3 \text{ N/C})(+\hat{j})$$

1.)

b.) What E above the plate:

This will have the same magnitude as the field above the plate, but with a unit vector in the negative direction, or

$$\vec{E} = (9x10^3 \text{ N/C})(-\hat{j})$$

